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Abstract-Elastic wave scattering data is utilized to characterize a crack of arbitrary shape by an
equivalent elliptical crack contained in an unbounded solid. The inverse method is based on an
integral representation for the scattered field in the frequency domain. The proposed method is
valid for both small and intermediate wavelengths as compared with the size of the crack. In
particular for intermediate wavelengths and normal incidence a simple method is discussed. Its
solution gives the location of the geometrical center of the crack, the crack size, and the crack
opening displacement.

INTRODUCTION

A crack in the interior of a solid body can be characterized through its measurable effect
on an externally applied ultrasonic field. Recent review papers on ultrasonic QNDE which
include substantial discussions of scattering of ultrasonic waves by cracks are those of
Thompson[l] and Fu[2]. Practical applications have been discussed by Coffey and Chap
man[3]. For the theoretical solution of the direct problem of scattering of elastic waves by
cracks we point out the papers by Mal[4], Krenk and Schmidt[5], and Martin[6], and the
monograph given in Ref. [7].

There is considerable literature on the general inverse scattering problem, particularly
for scattering of acoustic and electromagnetic waves, see, e.g. Devaney[8] and DeFacio and
Rose[9]. On the inverse problem of scattering by cracks, relatively little has, however, been
published. A method based on inverse time-domain ray tracing, has been discussed in Ref.
[10]. Teitel[ll] and Gubernatis and Domany[12] have discussed the determination of
orientation and size for cracks which are elliptical in shape, the location ofwhich are known
a priori. Their method utilizes scattered data at very large wavelengths as compared with
the size of the crack, and is based on the quasi-static crack-opening displacements given by
Eshelby[13]. A different method has been proposed recently in Ref. [14] to characterize a
crack of general shape, the location of which is not known. This method is also valid at
large wavelengths.

In the present study, we propose an inverse method for ultrasonic crack-scattering
data to characterize an equivalent elliptical crack in a homogeneous isotropic linearly elastic
solid. The method is based on an integral representation for the scattered field in the
frequency domain, and in the far-field region. The proposed method is valid for both small
and intermediate wavelengths as compared with the size of the crack. In particular, for
intermediate wavelengths and normal incidence a simple method is discussed. The method
is based on an approximate closed form algebraic representation of the crack-opening
displacement. Its solution gives the location of the geometrical center of the crack, the crack
size, and the crack-opening displacement.

THEORETICAL PRELIMINARIES

We consider a flat crack of area A, that is the scatterer for an incident pulse of wave
motion in an unbounded elastic solid. The problem can conveniently be dealt with in the
frequency domain. Hence, the generic problem is one of scattering of a time harmonic
incident displacement wave of the general form
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uin(x) exp (-i wt) (1)

where uin(x) is understood to depend on frequency. The term exp (-iwt) will be omited in
the sequel. Both the incident and scattered elastic waves satisfy the homogeneous wave
equation

(2)

where Cijpq are the elastic moduli of the solid and p is its mass density. Application of
Green's theorem gives the following integral representation for the scattered displacement
field ut(x) :

(3)

in which Gjp is the tensor Green's function for the elastic wave equation (2)

(4)

is the jump in displacement (which is equal to the jump in scattered displacement) across
the crack surface, and nk is the unit vector in the direction of the outward normal to A -. x
and { define two coinciding coordinate systems with the origin at the centroid of A. x
represents points outside A, while {represents points inside A. For an isotropic elastic solid,
under consideration in this study, we have

(5)

and

(6)

where

G(k R) = exp (ik~R) a = L, T
~ 4nR'

(7)

(8)

(9)

(10)

(11 )

(12)
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(13)

(14,15)

The unknown crack-opening displacements, ~um, in the integrand ofeqn (3) are determined
by solving integral equations that result from traction boundary conditions on the crack
faces. The general system of equations has been presented by Budiansky and Rice[15], for
the direct scattering problem.

Equation (3) takes a simple form if one considers the scattered displacement field in
the "far-field" region. It can be shown that under the assumptions

(16a,b)

in which L is a characteristic length of the crack surface and r = lxi, eqn (3) becomes

uj(X) = CmkpqG]p.q(X)1~Um(')nk exp (-ikL " x/r) dA(,)

+CmkpqGL.q(X)1~Ummnk exp (-ikT"x/r) dA(,). (17)

In previous studies [1 1, 12, 14] the inverse problem was considered for low frequencies,
kTL « 1. In Refs [11, 12] the assumption k.r » 1 was also made, which is not necessary.
For the low frequency range, only the first term in an expansion of the exponential in
the integrand of eqn (17) was kept. Reference [14] subsequently solved the non-linear
optimization problem for the position ofthe crack with general shape, for the crack-opening
volumes, and for the crack orientation. In the present study, the case under consideration
is k.L > 1. This together with eqns (16a) and (16b) gives

k.r» 1. (18)

Use of this inequality makes Gjp.q(x) ofeqns (7) and (8) particularly simple. In what follows,
we shall discuss the method of solution of the inverse problem for two cases separately.
The first case, deals with characterizing a crack the orientation of which is also unknown.
The solution, though theoretically feasible, is practically not convenient. For this reason,
the case of normal incidence is handled separately. A different solution technique is applied
that is particularly simple for intermediate frequencies.

INVERSE SOLUTION FOR A CRACK OF UNKNOWN ORIENTATION

We suppose that ujC(x) is known (from an ultrasonic test) for several observation
points defined by x, the relative locations of which are known, but not their coordinates
relative to the origin, which is at the centroid of the crack. The idea is to use eqn (17) at a
sufficient number of observation points, so that the location of the centroid of the crack,
the crack-opening volumes, the crack orientation, and the crack size (assuming a shape)
can be determined. The method of solution begins with an expansion of the exponential in
the integrand of eqn (17). This gives

where
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(20)

is the symmetric tensor representing the crack-opening volumes, and

(21)

denotes first moments of the crack-opening volumes. Higher order moments are included
in the omitted terms of eqn (19). In Ref. [14], only zero moment terms were kept in eqn
(19), since a low frequency range was considered, and the inverse problem was subsequently
solved for Vmk and x. Here, we shall discuss a method of solution for the inverse problem
defined by eqn (19) which includes higher order moment terms.

In terms of the known coordinate system, XIX2X3, the orientation of which is known,
but not the location of its origin, the scattered displacement field, eqn (19), may be written
in vector-matrix form as

(22)

where

in which I = 1, 2, 3. The scattered displacement vector {USC} has six components considering
its real and imaginary parts. Vector {B} has 48 components, since M1mk has 36 independent
components and Vmk has 12 independent components. Equation (22) has a convenient form
for solution since {B} is independent of the observation point, x. The ith equation of eqn
(22) in complex form is

in which I = 1,2, 3 and

Also

Pill = (A, + 2j.l)Gil, I +A,(Gj2,2+ GiJ,3)

Pi12 = 2j.l(Gil ,2 +Gj2,1)

Pil3 = 2j.l(Gil ,3 +GiJ,I)

Pm = (A,+2j.l)Gj2,2 +A,(Gil , I + GiJ.3)

Pm = 2j.l(Gi2,3 +GiJ,2)

Pm = (A,+2j.l)GiJ,3+A,(Gil ,1 +Gi2,2)'

Qpjkl = Ppjk ( - ixtlr) , 1= 1,2,3

(25)

(26)

where Ppjk is given by eqns (25) with the change GJ;j,kkL + G~,kkT instead of Gpj,k' We suppose
that the left-hand side of eqn (22) is known. The equation then defines a set of six non
linear equations for 51 unknowns (3 components of x, and 48 components ofB). To obtain
a solution we make the system overdetermined by considering the data lI;c in nine obser
vation points (x I, x 2

, ••• ,x 9
), since the components of vector B are independent of x. Thus

we have 54 equations and 51 unknowns. Since B appears linearly in eqn (22), we solve
for B in terms of the unknown x 1 by considering the data in eight observation points
simultaneously. This gives
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This, in turn, yields

Substitution of eqn (28) into eqn (22) for the ninth observation point, x 9
, gives
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(27)

(28)

(29)

The solution of the inverse problem has therefore been reduced to the solution of eqn (29).
This is a system of six non-linear equations for three unknowns (x l, xi, x D, since the
relationship between Xl, x 2

, ... , x 9 is known from the relative position of the instrument
that measures the scattered data. The non-linear system of equations can be solved by
standard non-linear optimization techniques. The solution so obtained is the unknown
Xl = (xl,xLxD. Substitution of Xl in eqn (28) gives Vij and M 1ij. Once Vij are known the
orientation of the crack can be determined from the transformation rule of a tensor.
Furthermore, use of Vij and M 1ij gives the crack-opening displacements and the size of the
crack-having assumed its shape-if an expansion in characteristic functions is used for
the crack-opening displacements. More terms in such an expansion can be incorporated if
higher order moments are included in eqn (19). This, of course, is necessary as the frequency
increases. More terms in eqn (19) means more unknowns to solve for in vector B. This
would increase dramatically the number of required observation points where the scattered
data has to be known. It does seem therefore that even though theoretically the above
method is satisfactory, it presents inconveniences if it is to be applied in practice. For
this reason, one more assumption will be made that simplifies the method of solution
dramatically.

INVERSE SOLUTION FOR NORMAL INCIDENCE

We consider a plane elastic wave incident normally upon a crack of general shape that
is contained in an unbounded elastic isotropic solid. The normal to the crack is along the
xraxis. Then eqn (17) together with inequality (18) gives for the scattered displacement
field

(30)

where

I'p= i~u~eXP(-ika'·'l')dA('), cx=L,T; P=R,I

')'j = xdr.

(31)

(32)

(33)

In eqn (30) v is Poisson's ratio of the material. We suppose that the scattered data, lie, is
known. Then for one observation point x, eqn (30) defines a set of six non-linear equations
and seven unknowns (Ip and x). The four unknowns I p, defined by eqn (32), depend on
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the observation point x through y. Since IiJ appear linearly in eqn (30), they can be obtained
in terms of x by simultaneous solution of any four of six equations of eqns (30). The result
is

where

(34)

and

MIl =D~R'

M 21 = DT"

M 31 = D~R'

M 41 = D~"

M I2 = -DTI'

M n = DTR,

M 32 = -D~h

M 42 = D~R'

M l3 =DTR'

M 23 = DT"

M 33 = D1R,

M 43 = D1"

M 14 = -DT,

M 24 = DTR

M 34 = -D11

M 44 = D1R

(35)

D}R = -kL 1m [G(kL r)]N1(Yj)

D}I = kL Re [G(kLr)]N,(y)

D}R = kT 1m [G(kT r)]N 2(y)

D}I = -kT Re [G(kT r)]N2(Yj)

N,(y) = y{C~J(Yi+YD+y~J

(36)

Substitution of eqn (34) into the remaining two equations of eqn (30) (Re (u~C) and
1m (~C» gives two non-linear equations and three unknowns (xLx~, x D. Ifthe same process
is repeated for another observation point say, x 2, then two more non-linear equations are
obtained. Thus overall we have four non-linear equations and three unknowns Xl, since
x 2 = Xl+X 12 and X12 is known from the relative position of the instrument that measures
the scattered data. Standard non-linear optimization techniques can be used to solve the
overdeterminate system of equations at hand. The solution so obtained is the unknown x I.

Substitution of x' in eqn (34) gives Ip(x I). Similarly Tpex 2) is also obtained. It should be
emphasized here that up to this point no assumption on the crack's shape has been made.

We proceed now to obtain information about the crack-opening displacement and the
crack size presuming knowledge of the crack's shape. In what follows, we represent the
crack of unknown general shape by an equivalent elliptical crack. Furthermore, its crack
opening displacement for a fixed frequency is written as

M

~u1 = L Ee(1-(Va 2 -(Vb2)(n+ 1)/2, fJ = R, I
n=O

(37)

where superscript p refers to real or imaginary parts, a and b (where a > b) are the semi
axes of the ellipse, and the constants Ee are understood to depend on frequency. Equation
(37) of the crack-opening displacement was motivated by the fact that it is particularly useful
for intermediate and lower frequencies, kTL ;$ 1.5. In fact, it is expected that the first term
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Fig. I. Comparison of exact crack-opening displacement (solid lines) with approximate one as given
by an ellipse (dotted lines). The numbers shown are normalized by 8/nuo(kLa) (l-v)2/(1-2v).
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of eqn (37) will approximate Au1 quite accurately for kTL ;$ 1.5. In Fig. 1 the "exact" real
and imaginary parts of AU3 are shown (solid lines) for a penny-shaped crack under normal
incidence with kTa = 1.4, as obtained from the numerical solution of the integral equa
tion[16]. A comparison is made with Au1 as given by the first term of eqn (37) (dotted
lines). The agreement is good. For higher frequencies more terms in eqn (37) must be kept.
Substitution ofeqn (37) in eqn (32) and subsequent evaluation ofthe integral (see Appendix)
gives

where

M

I p= L E~nab2mr(m)Jm(K.a)(K.a)-m, m = (n+3)/2
n=O

(38)

(39)

The left-hand side of eqn (38) is known from eqn (34). Thus, for each observation point,
eqn (38) defines a set of four non-linear equations and 2(M+2) unknowns (E~, a, b). The
unknowns are determined by considering a number of observation points that is at least
equal to the smallest integer that is larger or equal to (M+2)/2. The solution can be simply
obtained by first considering 2(M+1) and solving for the 2(M+ 1) unknowns, E~, that
appear linearly in the equations, in terms of a and b. Substitution of E~ into at least the
two remaining equations defines a non-linear optimization problem for the two unknowns
a and b, that can be solved for by a least squares method. For intermediate frequencies
(kTa ~ 1.5), the solution technique becomes particularly'simple, and the solution is obtained
in closed form in what follows.

As discussed previously, for kTa ;$ 1.5 only the first term is kept in eqn (37). Equation
(38) then gives

(40)

The functional form of eqn (40) agrees with that of eqns (31) and (32) in the work of
Fu[17]. Since kTa ;$ 1.5 is under consideration we have

(41)

This relation simplifies eqn (40) to
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(42)

It appears that eqn (42) defines a set of four independent equations and four unknowns
(E R

, E l
, a, b). However, it is noted that

(43)

Thus eqn (42) gives only three independent equations. To determine the four unknowns,
one more equation is needed. This equation is provided by considering another observation
point, x at the same frequency. Equation (42) then gives

(44)

where

(45)

Use of anyone of eqns (44) together with any three equations of eqns (42) gives four
equations to be solved simultaneously for the four unknowns (E R

, E1
, a, b). As an example,

consider

Ii = E I 2nab[I-(KTa)2/1O]J3

I~ = E R2nab[l- (KLa) 2/10]/3

n;. = E R 2nab[l-(KTa)2/1O]/3

Ii = E I 2nab[l-(KTa)2/1O]/3

the solution of which is obtained as

where

(46a)

(46b)

(46c)

(46d)

(47)

(48)

(49)

Equations (47) and (48) give the semi-axes a > b of the equivalent elliptical crack. The
crack-opening displacement is given by the first term of eqn (37) with E R

, E 1 readily
obtained from eqns (46) since a and b are known.

APPLICAnONS

Several numerical tests have been performed to check the validity of the solution of
the inverse problem. Discussion of the results of one of the tests is given here. The crack
considered is penny shaped, and is normal to the propagation direction of an incident plane
wave, which is longitudinally polarized along the xrdirection, with amplitude UO and wave
number kL . The crack is contained in an infinite elastic isotropic solid characterized by
Poisson's ratio v = 0.3.
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Table I. Real and imaginary parts of dis
placement components for the scattered
field at two positions: x '/a = (5,5,10) and

x 2/a = (6,7,10)

kTa = 1.4 x'/a x 2/a

u~/uo 0.025 0.027

u',/uo -0.033 0.029

u~/uo 0.025 0.031

UI2/UO -0.033 0.033

u~/uo 0.013 -0.026

u~/uo 0.041 -0.008
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To obtain the position of the centroid of the crack, the crack size and the crack-opening
displacement, the scattered displacement field is needed at two observation points. This
data is synthesized by first solving the direct problem. The real and imaginary parts of the
crack-opening displacement are given in Fig. 1, for kTa = 1.4. Subsequently eqn (30) has
been used to obtain the scattered data in the far field. The two observation points chosen
arbitrarily are x Ija = (5,5,10) and x 2ja = (6,7,10). The scattered particle displacement
components at these two observation points, for kTa = 1.4, are listed in Table 1.

The synthesized scattered data was used to solve the inverse problem. The position of
one of the observation points was obtained as well as the crack size, and the crack-opening
displacement. For a penny-shaped crack and for kTa ;;;; 1.5 the radius of the crack is simply
given as

(50)

where f3 is either the real part or the imaginary part. Also, I p is either at x or at i. The
crack-opening displacement follows as

(51)

where

(52)

The match between the solution of the inverse problem and the geometrical parameters
used to synthesize the scattered data, was found to be excellent, for several frequencies.
Numerical tests were also performed on modified scattered data to test the stability of the
solution. It should be pointed out here, that different errors in the measured components
of the scattered displacement field lead to solutions of eqn (34) that are different from each
other depending on which displacement components we used. For this reason, an averaging
approach should be taken. Similarly, in solving eqn (42) a different solution is obtained
depending on which three equations we consider. Again, it would be appropriate to take
the average of all the solutions obtained.

In Fig. 2, a representative example of the stability tests performed is shown. The
scattered data used was varied from the exact known data (horizontal axis). The real and
imaginary parts of each one of the components of the scattered displacement field were
changed by the same amount, while the other components used were the exact ones. The
vertical axis of Fig. 2 defines the absolute value of the relative error of the calculated size
from the exact known size. It is found that errors in the scattered data cause errors of the
same order of magnitude in the inverse solution.
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Fig. 2. Relation between crack-sizing error and data error.
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APPENDIX

The integral to be evaluated is written as

(AI)

where

(A2)

With the change of variable rl = '1/B, B a(1- nW) integral (A2) becomes
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The integral is recognized as a Bessel function since

- (z/2)' fl -;2/ 2,.- III
J,(Z) - r(V+ 1/2)r(lf2) _, e (1-1 ) d/.

Use of eqn (A4) in eqn (A3) gives

where

Now, we substitute eqn (AS) into eqn (AI) with (2 = b cos 0, and J _'liz) = (2/nz) 112 cos z and get

This is recognized as a Bessel function, since Sonine's second finite integral is

Use of eqn (A8) in eqn (A7) gives

where

k[ (b l)J'/2K=; x;+x~ ~ .
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(A3)

(A4)

(AS)

(M)

(A7)

(A8)

(A9)

(AlO)


